小学数学0的两种含义是什么

“0”在小学数学中通常表示没有或是数字0,我为大家带来了相关知识点,请大家接着往下看吧。

数学0的含义

1、没有任何东西

2、数轴的前点(原点)

3、可以表示分界

4、可以表示起点

5、可以起到占位作用

0是奇数还是偶数

0是一个特殊的偶数(2002年国际数学协会规定零为偶数;我国2004年也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。

哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。

0的相关知识点

0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。

以上内容就是我为大家找来的相小学数学关内容,希望可以帮助到大家。

初中数学知识点总结 重点知识归纳整理

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级数学 知识点

实数

一、实数的概念及分类

1、实数的分类 正有理数 有理数零有限小数和无限循环小数

负有理数

正无理数

无理数无限不循环小数

负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3

(3)有特定结构的数,如0.1010010001…等;

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4. 实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来,

数轴上的点有些表示有理数,有些表示无理数,

实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

初一数学知识点

知识网络:

概念、定义:

1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly

term)。

5、多项式里次数项的次数,叫做这个多项式的次数(degree of a polynomial)。

6、把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

初一 数学学习方法

一预习

对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

二听讲

这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

三复习

体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

四作业

认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

五 总结

这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

如何挑选及处理习题

一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。

二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。

要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的 反思 ,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。

三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。

因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”

2021苏教版初一数学知识点相关 文章 :

★ 初一数学知识点上册苏教版

★ 苏教版初一数学知识点

★ 2021初中生物苏教知识点归纳

★ 备考资料

★ 初中生的学习技巧

★ 最好的学习方法推荐

★ 八年级学习方法指导

初中数学知识点总结梳理

初中生勤于总结知识点能够帮助我们更快的提升 成绩 ,下面我为大家总结了初中数学知识点,仅供参考。

初中数学重要考点

数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

5、相反数

数学有理数的运算

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

初中数学一元二次方程的解法

①、直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

②、配方法

配方法是一种重要的 数学 方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

③、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

以上就是我为大家总结的初中数学知识点,仅供参考,希望对大家有所帮助。

初中数学初一初二知识点

为了方便大家系统的复习初中数学的知识点,这篇文章给大家总结梳理了初中数学重要知识点,供大家参考学习。

有理数

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

(6)有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0。例:0×1=0

(7)有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

整式

(1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

②多项式:由若干个单项式相加组成的代数式叫做多项式。

③系数:单项式中所有字母的指数的和叫做它的次数。

④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。

⑤项:组成多项式的每个单项式叫做多项式的项。

⑥多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(2)整式加减

整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。

一元一次方程

(1)定义:

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(2)解一元一次方程的步骤

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1。

相交线与平行线

(1)相交线

在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。

(2)垂线

当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

(3)同位角

两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

(4)内错角

两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

(5)同旁内角

两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

(6)平行线

几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

(7)平移

平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

实数

(1)平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

(2)立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

(3)实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

二元一次方程组

(1)定义

二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。

(2)解二元一次方程的方法

①代入消元法。

②加减消元法。

二次函数

(1)二次函数的三种表达式

二次函数的一般式为:y=ax?+bx+c(a≠0)。

二次函数的顶点式:y=a(x-h)?+k 顶点坐标为(h,k)

二次函数的交点式:y=a(x-x?)(x-x?) 函数与图像交于(x?,0)和(x?,0)

(2)二次函数的性质

①二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。

②二次项系数a决定抛物线的开口方向和大小。

③一次项系数b和二次项系数a共同决定对称轴的位置。

④常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

(3)二次函数的对称轴公式

二次函数图像是轴对称图形。对称轴为直线x=-b/2a。

对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧;

a,b异号,对称轴在y轴右侧。

函数的要素:自变量,因变量,常数k(系数,斜率),自变量的值在平面直角坐标系的横轴上(X轴)表示,因变量的值在纵坐标轴上(Y轴)表示。点的坐标为:(x,y)

一。正比例函数

1、.图像:解析式:y=kx

(k≠0)经过原点的一条直线。是特殊的一次函数。

2、性质:k>0时,图像经过

一、三象限。y随x的增大而曾大,y随x的减小而减小。

k<0时,图像经过

二、四象限,y随x的增大而减小,y随x的减小而增大。

3、画法:任取一个点,再过原点作一条直线就可以了。

二、一次函数

1、图像:解析式:Y=kx+b(k≠0),是正比例函数y=kx

(k≠0),上下平移b个单位得来的

与坐标轴有两个交点。A(0,y),B(x,0),找到

x,y

的值后过这两点作一条直线就

好了。

2、和正比例函数的性质相同。k的绝对值越大,图像越来越接近y轴,反之接近x轴。k=1时,图

像是一三象限的角平分线,k=-1时,图像是二四象限的角平分线。

考点:经常用两个一次函数的图像来说明两种电话费的优惠情况。(有座机费,一次函数;无座机费,正比例函数)两个函数的图像有一个交点,其横坐标表示通话时间,纵坐标表示收费情况

交点的横坐标值表示通话时间,纵坐标值表示两种收费一样。交点靠右,随着通话时间的增加,一次函数图像低,表示有座机费的优惠。交点靠左,表示通话时间低于这个范围,无座机费的优惠。举一反三,其他类似题目不一一说明。

三、反比例函数

1、图像:解析式:y=k/x(k≠0)图像是双曲线。

2、性质:k>0时,图像在一三象限,y随x的增大而减小,y随x的减小而增大。

k<0时,图像在二四象限,y随x的增大而增大,y随X的减小而减小。

图像永远不与坐标轴相交。图像两个分支关于原点对称。

考点:与一次函数合并起来在一个坐标系研究。一般是求交点坐标。分析;相交时候,两个方程的x和y是分别相等的,只要让

k1x=k2/x

相等就可以求出x的值,有两个,分别代入原解析式就求出y,,从而点的坐标就知道了。

较复杂的题目是一次函数与反比例函数相交,形成了三角形,求三角形面积。或者告诉你面积了,让你确定

函数的解析式。

总之,求解析式就是分析是什么样的函数,从而设出对应的解析式,代入求值就行了,我们称为待定系数法。详细的解题的思路和方法技巧需要结合一些题目来说明。你发过来,追问,我可以给你画多个图。

本文来自作者[邻家嘉良]投稿,不代表游游号立场,如若转载,请注明出处:https://uucheng.com/uuch/3785.html

(2)
邻家嘉良的头像邻家嘉良签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 邻家嘉良的头像
    邻家嘉良 2025年10月11日

    我是游游号的签约作者“邻家嘉良”

  • 邻家嘉良
    邻家嘉良 2025年10月11日

    本文概览:“0”在小学数学中通常表示没有或是数字0,我为大家带来了相关知识点,请大家接着往下看吧。 数学0的含义 1、没有任何东西 2、数轴的前点(原点) 3...

  • 邻家嘉良
    用户101106 2025年10月11日

    文章不错《小学数学0的两种含义是什么》内容很有帮助

联系我们

邮件:游游号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信